Unit 3 – Deck 1

Organic Chemistry

The hydrocarbons

Lecture Topics

• Outline

- Types of hydrocarbons Basics of nomenclature
- Isomers
- Properties of Alkanes
- Alkane Substitution Reactions
- Alkenes
- Properties of Alkenes
- Aromatics
- Electrophilic substitution reactions
- Resonance

Reactions of Alkenes (electrophilic addition)

Lewis Structures of Organic Compounds

Carbon almost always makes four bonds to fill octet

methane

ethene

Abbreviated Organic Structures

The standard representation of organic compounds

We all know carbon makes 4 bonds. Mentally fill in missing bonds with –H

Practice: Abbreviated Organic Structures <u>Draw</u> the standard representation of organic compounds

aspirin

We all know carbon makes 4 bonds. Mentally fill in missing bonds with –H

acetylacetone

Diagrams Showing 3D Geometry

CH₃

Naming the Aliphatic Groups

Group Names (fragments)

Methane Ethane Propane Butane Pentane Hexane Heptane Octane

Compound Names (whole compounds)

10

propane

Saturated vs Unsaturated Hydrocarbons

Saturated

propane

Unsaturated

alkene

propene

alkyne

propyne

Position numbers in chemical names

1-hexene

11

Saturated (hexane)

Unsaturated (hexene)

2-hexene

3-hexene

Position numbers for branched hydrocarbons

H₃C

3,9-dimethyl-5,11-diethyl-tetradecane

Position numbers with for branched hydrocarbons

 CH_3

Name the compound

A. 3-butyl-hexane B. 4-ethyl-octane C. 5-propyl-heptane

D. 5-ethyl-octane

Practice: Naming unsaturated hydrocarbons

Draw the following hexyne compounds

1-hexyne

2-hexyne

1,5-hexadiyne

Review: the degree of a carbon

Primary (1°)

Secondary (2°)

Tertiary (3°)

Quaternary (4°)

Structural Isomers: Same atoms different connectivity

Group Names

Compound Names

Other structural isomers

Same composition but different bonding pairs

Geometric Isomers: Same atoms, same connectivity different arrangement

Alkenes

Cis

F

trans

A chiral molecule is a structure that is not identical to its mirror image

Left-handed

Right-handed

Sometimes we'll also refer to this as "handedness"

Optical Isomers: Same atoms, same connectivity, same arrangement different handedness (chirality)

The R molecule is the *enantiomer* or the S molecule

What is the relationship?

3Η

VS

A. Different compounds

B. Structural Isomer

C. Geometric Isomer

D. Enantiomer (Optical Isomer)

VS

Some Properties of Alkanes

Reactions of Alkanes: Substitution

$CH_4(g) + Cl_2(g) \xrightarrow{light or heat} CH_3Cl(g) + HCl(g)$ (explosive)

A radical reaction mechanism:

Initiation $Cl_2 \xrightarrow{hv \text{ or } \Delta} Cl^{\bullet} + Cl^{\bullet}$ Propagation $Cl^{\bullet} + CH_4 \rightarrow H^{\bullet} + CH_3Cl$ Termination $Cl^{\bullet} + Cl^{\bullet} \rightarrow Cl_2$ $Cl^{\bullet} + H^{\bullet} \rightarrow Cl_2$

Yield distribution of: *CH*₃*Cl*, *CH*₂*Cl*₂, *CHCl*₃, *and CC*

Reactions of Alkenes:

Oxidation of Alkanes to Alkenes (Elimination)

$CH_3 - CH_3 \xrightarrow{Cr_2O_3, \Delta} CH_2 = CH_2 + H_2$

Conversion of petroleum to a high value reagent (goes on to make arenes, polyethylene, PVC...)

DEF: Elimination I a reaction in which atoms are "removed" from the reactant

Nature of alkenes and alkynes

σ -bond

σ -bond

 π^* -bond

 π -bond

π -bond

π^* -bond

π -bond

π^* -bond

Reactions of Alkenes: Dehydrohalogenation

(an alternative route to alkenes)

Electrophilic Addition

 $CH_2 = CH_2 + Cl_2 \rightarrow CH_2Cl - CH_2Cl$

Hydrohalogenation 3

 $CH_2 = CH_2 + HCl \rightarrow CH_3 - CH_2Cl$

(a specific electrophilic addition)

"Arrow pushing" rxn mechanism

DEF: Addition I a reaction in which atoms are "added" to the reactant

DEF: Electrophile I a reagent attracted to regions of other molecules with high electron density

Resonance Structures

Equienergetic resonance structures

Glycine-Alanine

Non-equienergetic resonance structures

Draw the equivalent resonance structures

Conjugation

DEF Conjugation: An alternation of single and double bonds that yield a planar structure.

Conjugation results in the delocalization of electrons across many atoms. Extensive conjugation over yields richly colored compounds used as dyes and color sensors.

 β -carotene

Conjugation

β -carotene

NO NO

Astaxanthin

Retinol

Chlorophyll a

The downfall of the Kekulé structures of benzene (aka resonance)

benzene Particularly stable

Resonance stabilize certain cyclic aromatics...

...but not others

Particularly unstable

Aromaticity

Aromatic (4n+2 electrons)

Antiaromatic (4n electrons)

Aromatic compounds are stable

Antiaromatic compounds are NOT stable

Aromatic or Antiaromatic?

Positional substitution on benzene

Ortho (next to)

Meta (skip one)

Para (opposite)

ortho-xylene

meta-xylene

para-xylene

1,2-dimethyl-benzene

Numbering

1,4-dimethyl-benzene 1,3-dimethyl-benzene

Frost Circles

Reactions of aromatics

Η

Н

Mechanism

Electrophilic Substitution is more for aromatics than in alkenes

Aromaticity stabilizes the double bonds A catalyst is required to accelerate the reaction

fast & reversible

slow & reversible

fast & irreversible

+ HBr + FeBr₃

Controlling the rate of reaction by structural modification

Electrophilic substitution of Nitrate $HNO_3 + H_2SO_4 \rightarrow NO_2^+ + HSO_4^- + H_2O$

π -acceptor substituents slow down the reaction

Selectively substitute at *meta* position

Selectively substitute at *ortho* or *para* position

 π -donor substituents speed up the reaction

phenol

aniline

Where will nitrate substitute?

Will this reaction be faster or slower than for benzene?

$HNO_3 + H_2SO_4 \rightarrow NO_2^+ + HSO_4^- + H_2O$

