Unit 1 – Deck 1

ELECTROCHEMISTRY

Introduction – Electricity in Chemistry

Introduction to electrochemistry (1)Reduction & oxidation (2)Assigning oxidation states (3)

(4) Electrochemical cell (5) Cathodes and anodes (6) Cells and half cells

What is Electrochemistry?

- Electrochemistry:
- running electricity through them.

- Common Examples:
- Batteries
- Nerve impulses in our bodies

The study of chemical reactions that generate electricity or can be carried out by

Chemistry that involves the net transfer of charge between discrete components (atoms, ions, molecules, materials...) of a chemical system.

©Johan Jarnestad/The Royal Swedish Academy of Sciences

What is a battery?

e-

e-

ELECTROLYTE

e-

BARRIER

©Johan Jarnestad/The Royal Swedish Academy of Sciences

COBALT OXIDE

M. Stanley Whittingham 1970

Nobel Prize in Chemistry - 2019

John B. Goodenough 1980

©Johan Jarnestad/The Royal Swedish Academy of Sciences

Akira Yoshino 1985

Applications

Electric vehicles

Grid Storage for wind, solar, and load balancing

Medical devices

Armand, M., Tarascon, JM. Building better batteries. Nature 451, 652–657 (2008).

Electrochemistry in synthesis – the electrolytic cell

Hall-Héroult process Smelting | reduction in molten state

 $Al_2O_3 + \frac{3}{2}C \longrightarrow 2Al(l) + \frac{3}{2}CO_2$

Oxidation of one Al can will power your laptop for ~3 hours

Aerospace Superalloys

Structural materials

~3000 kg/day per pot

and a

3D

Reduction-Oxidation Chemistry

reactions.

Sometimes strong bonds are broken/formed:

Sometimes only weaker bonding interactions involved:

Reduction-Oxidation (redox) chemistry is the study of the movement of electrons from one atom to another in chemical

Definitions

Oxidation Reactions Gaining oxygen (O_2) Losing hydrogen (H₂) Losing electrons

Reduction Reactions Losing oxygen (O_2) Gaining hydrogen (H₂) Gaining electrons

Electronegativity

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 Phictogens	16 Chalcogens	17 Halogens	18
1	1 H Hydrogen 2.20	Atomic Symbo Name Weight																2 He Helium
2	3 Li Lithium 0.98	4 Be Beryllium 1.57											5 B Boron 2.04	6 C Carbon 2.55	7 N Nitrogen 3.04	8 O Oxygen 3.44	9 F Fluorine 3.98	10 Ne Neon
3	11 Na Sodium 0.93	12 Mg Magnesium 1.31											13 Al Aluminium 1.61	14 Si Silicon 1.90	15 P Phosphorus 2.19	16 S Sulfur 2.58	17 Cl Chlorine 3.16	18 Ar Argon
4	19 K Potassium 0.82	20 Ca Calcium 1.0	21 Sc Scandium 1.36	22 Ti Titanium 1.54	23 V Vanadium 1.63	24 Cr Chromium 1.66	25 Mn Manganese 1.55	26 Fe Iron 1.83	27 Co Cobalt 1.88	28 Ni Nickel 1.91	29 Cu Copper 1.90	30 Zn Zinc 1.65	31 Ga Gallium 1.81	32 Ge Germanium 2.01	33 As Arsenic 2.18	34 Se Selenium 2.55	35 Br Bromine 2.96	36 Kr Krypton 3.0
5	37 Rb Rubidium 0.82	38 Sr Strontium 0.95	39 Y Yttrium 1.22	40 Zr Zirconium 1.33	41 Nb Niobium 1.6	42 Mo Molybdenum 2.16	43 TC Technetium 1.9	44 Ru Ruthenium 2.2	45 Rh Rhodium 2.28	46 Pd Palladium 2.20	47 Ag Silver 1.93	48 Cd Cadmium 1.69	49 In Indium 1.78	50 Sn ^{Tin} 1.96	51 Sb Antimony 2.05	52 Te Tellurium 2.1	53 lodine 2.66	54 Xe ^{Xenon} 2.6
6	55 Cs Caesium 0.79	56 Ba Barium 0.89	57–71	72 Hf Hafnium 1.3	73 Ta Tantalum 1.5	74 W Tungsten 2.36	75 Re Rhenium 1.9	76 Os Osmium 2.2	77 Ir Iridium 2.20	78 Pt Platinum 2.28	79 Au Gold 2.54	80 Hg Mercury 2.0	81 TI Thallium 1.62	82 Pb Lead 2.33	83 Bi Bismuth 2.02	84 Po Polonium 2.0	85 At Astatine 2.2	86 Rn Radon
7	87 Fr Francium 0.7	88 Ra Radium 0.9	89–103	104 Rf Rutherfordium	105 Db Dubnium	106 Sg Seaborgium	107 Bh Bohrium	108 HS Hassium	109 Mt Meitnerium	110 DS Darmstadtium	111 Rg Roentgenium	112 Cn Copernicium	113 Nh Nihonium	114 Fl Flerovium	115 MC Moscovium	116 Lv Livermorium	117 TS Tennessine	118 Og Oganesson

6	57 La Lanthanum 1.10	58 Ce Cerium 1.12	59 Pr Praseodymium 1.13	60 Nd Neodymium 1.14	61 Pm Promethium	62 Sm Samarium 1.17	63 Eu Europium	64 Gd Gadolinium 1.20	65 Tb Terbium	66 Dy Dysprosium 1.22	67 HO Holmium 1.23	68 Er Erbium 1.24	69 Tm Thulium 1.25	70 Yb Ytterbium	71 Lu Lutetium 1.27
7	89 AC Actinium 1.1	90 Th Thorium 1.3	91 Pa Protactinium 1.5	92 U Uranium 1.38	93 Np Neptunium 1.36	94 Pu Plutonium 1.28	95 Am Americium 1.3	96 Cm Curium 1.3	97 Bk Berkelium 1.3	98 Cf Californium 1.3	99 ES Einsteinium 1.3	100 Fm Fermium 1.3	101 Md Mendelevium 1.3	102 NO Nobelium 1.3	103 Lr Lawrencium

Electronegativity measures the tendency of an atom to attract a shared pair of electrons towards itself.

Redox Mnemonics

OLRIG Oxidation Is Loss of electrons **Reduction Is Gain of electrons**

Example – Reduction and Oxidation

Which of the following is an oxidation reaction?

1. $Br_2 + 2e^- \rightarrow 2Br^-$

2. $Li \rightarrow Li^+ + e^-$

Who is the oxidizing agent? Who is the reducing agent? Who is the oxidant? Who is the reductant?

Oxidation vs reduction how to tell

Reduction Gain of electrons

Careful here! There are ' plenty of exceptions.

Oxidation

Loss of electrons

Increase in oxidation number

Decrease in number of hydrogens

Increase in number of oxygens

Oxidation States

Each atom in a compound has its own oxidation state.

Oxidation states are not real ionic charges.

Oxidation states typically range from -4 to +7.

Oxidation states can be 0 and can even be fractions (unusual).

Assigning Oxidation States

Step #1: Start with elements that have the below conditions

- Free, uncombined element = zero Monatomic ion = charge on ion
- Group IA in compounds = +1
- Group IIA in compounds = +2
- F = -1 in compounds

Step #2:

Assign oxidation states for H and O

- H = +1 (in metal hydrides H = -1) • O = -2 (in peroxides O = -1; H - O - O - H)

Consideration of *Δ*EN can help in cases like peroxide

For now, we will assign oxidation states only to individual atoms.

Assigning Oxidation States

Step #3: Work on "The Others"

Sum of oxidation numbers in compound = 0Sum of oxidation numbers in polyatomic ion = charge on ion **Step #4:**

More electronegative element assigned negative Less electronegative element assigned positive

Work on "The Unknowns" by choosing the "best guess" to start assigning oxidation numbers

For now, we will assign oxidation states only to individual atoms.

Example

Identify the oxidation state for each element in the below chemical equations.

1. Fe in Fe_2O_3

2. Cs_2CuCl_4

Example – Reduction and Oxidation

Identify which species is oxidized and which species is reduced in the below chemical equations.

1. $Br_2 + H_2 \rightarrow HBr$

2. Mg + 2H⁺ \rightarrow Mg²⁺ + H₂

Who is the oxidizing agent? Who is the reducing agent? Who is the oxidant? Who is the reductant?

Advanced: Oxidation states for whole molecules

In charge delocalized compounds (and those with multiple resonance structures) assigning an integer formal oxidation state (FOS) to single atoms is not very useful. But we can assign partial charges to atoms and a FOS for the whole molecular fragment instead.

Preview: electrochemical series

Ac Th Pa U

Generally, we must also consider electron counts and relative stabilities of whole compounds, but generally electron poor compounds are more oxidizing

Poll: what is the stronger oxidant?

Which do you expect to be the stronger oxidizing agent?

1. Cl_2 or Cl^-

2. N_2O_5 or N_2O

3. K_2 FeO₄ or Fe₂O₃

