Unit 2 – Day 2

Kinetics

Integrated Rate Laws

Previously

Rates of chemical reactions Concentration Reactions rates Spectrometry

Rates as a function of time Instantaneous rate of reaction

Rate laws Reaction order Rate laws Rate constant

32

Atkins, Jones, Laverman 14.1–14.3 (supplementary 7th ed Topic 7A)

Integrated Rate Laws First Order Integrated Rate Laws

Half Life Half-Lives of First-Order Reactions

Second Order Rate Laws Second Order Integrated Rate Laws

Lecture topics – integrated rate laws

Review: rate laws

DEF Rate law: relates the rate of reaction to the concentration of the species participating. A generic rate law is $rate = k[A]^{x}[B]^{y}$ where A and B are reactants and k is the rate constant.

Rate laws tell us the instantaneous reaction rate given the current concentrations.

However, rate laws can't tell us what the concentrations will be at a given time.

Integrated Rate Laws

Integrated rate laws show concentration as a function of time.

This allows us to calculate how much reactant is left after a certain amount of time has passed, or how much time is required for a certain amount of reactant to react.

When working with integrated rate laws, we will monitor only one reactant concentration at a time, reactant A.

Concentration (mM)

Example – rate law and order

reactant A appears in the rate law.

Write the rate law for a zero, first, and second order reaction in which only

Integrating a first order rate law

 $rate = k[A]^0 = k$

Integrated rate laws – problem solving

If you know $[A]_0$ and k, you can (1) calculate [A] at any time t.

If you know $[A]_0$ and [A] at some time t, (2) you can calculate the rate constant k.

(3) If you know k and [A] at some time t, you can calculate how much A you started with $([A]_{0})$.

Example

N₂O gas decomposes at 780 °C following first-order kinetics. The rate law for the decomposition of N₂O is rate = $k[N_2O]$, where $k = 3.4 \text{ s}^{-1}$. If the initial concentration of N₂O is 0.20 M, what will the concentration be after 100 ms? $N_2O(g) \rightarrow N_2(g) + \frac{1}{2}O_2(g)$

Example

N₂O gas decomposes at 780° C following first-order kinetics. The rate law for the decomposition of N₂O is rate = $k[N_2O]$, where $k = 3.4 \text{ s}^{-1}$. If the initial concentration of N₂O is 0.20 M, how long will it take for the N₂O concentration to drop to 1% of its original value?

 $N_2O(g) \rightarrow N_2(g) + \frac{1}{2}O_2(g)$

Pseudo-first order kinetics

concentrations of two different reactants:

42

Overall, this is still called a second order reaction. First order in CH_3CI and first order in OH_3 .

Consider the reaction rate of <u>a second order reaction</u> that depends on the

$CH_3CI + OH^- \rightarrow CH_3OH + CI^-$

rate = $k[OH^{-}][CH_{3}CI]$

Pseudo-first order kinetics

In these situations, we treat the second-order reaction like a first order reaction.

When a reaction is carried out under conditions where one reactant is at a much higher concentration than the other, such as $[OH^-] = 2.0$ M and $[CH_3CI] = 0.05 \text{ M}$, then $[OH^-]$ is effectively constant:

rate = $k[OH^{-}][CH_{3}CI] \approx k[2.0][CH_{3}CI]$

Recap: rate laws vs. integrated rate laws

Rate laws: Rate laws relate the concentrations of the reactants to the reaction rate at any given moment in time.

amount of time.

 $[A] = [A]_0 - kt$

$rate = k[A]^{\chi}[B]^{\gamma}$

Integrated rate laws: Integrated rate laws allow us to predict how long a reaction will take, or how much of the reactant remains after a certain

 $\ln([A]) = \ln([A]_0) - kt$

$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$

Half-life $(t_{1/2})$

How much time it takes for one half of $[A]_{0}$ to react away.

After 1 half-life $[A] = \frac{1}{2}[A]_0$

After 2 half lives $[A] = \frac{1}{4}[A]_0$

After 3 half-lives $[A] = \frac{1}{8} [A]_0$

The amount of reactant remaining after n half-lives is

 $[A] = (1/2)^n [A]_0$

Example

What percentage of a reactant will remain after five half-lives have passed?

Half-life (t1/2)

At $t_{1/2}$, $[A] = 1/2[A]_0$

We can substitute $\frac{1}{2}[A]_{0}$ into the integrated rate laws and derive an equation to calculate the half-life for each order of reaction.

Zero Order Half-lives

First order half-lives

ln(2) $t_{1/2} =$

Second order half-lives

 $t_{1/2}$ $k[A]_0$

 $rate = k[A]^2$ 1 $\frac{1}{k} + kt$ $+ kt_{1/2}$ $[A]_{1/2}$

6 4 Time (s)

Summary: Half-lives

Zero order: As the concentration decreases, the half-life time decreases

First order: As the concentration decreases, the half-life time remains constant

Second order: As the concentration decreases, the half-life time increases

Recap: half-lives

Rate law

Integrated rate law

First half-life

Zeroth order	First order	Second order
$rate = k[A]^0 = k$	$rate = k[A]^1$	$rate = k[A]^2$
$[A] = [A]_0 - kt$	$\ln([A]) = \ln([A]_0) - kt$	$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$
$[A]_{1/2} = [A]_0 - kt_{1/2}$	$\ln([A]_{1/2}) = \ln([A]_0) - kt_{1/2}$	$\frac{1}{[A]_{1/2}} = \frac{1}{[A]_0} + kt_{1/2}$
$t_{1/2} = \frac{[A]_0}{2k}$	$t_{1/2} = \frac{\ln(2)}{k}$	$t_{1/2} = \frac{1}{k[A]_0}$

Question

mixed with excess B?

Second order

 $rate = k[A]^2$

$$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$$

$$\frac{1}{[A]_{1/2}} = \frac{1}{[A]_0} + kt_{1/2}$$
$$t_{1/2} = \frac{1}{k[A]_0}$$

Compounds A and B react to form C and D in a reaction that was found to be second order overall and second order in A. The rate constant k at 30 °C is 0.622 M⁻¹ min⁻¹. What is the half-life of A when 0.0410 M A is

Radioactive Half-life

Recall: Half-life is the time required to use one-half of the reactant

- one half of the mass (m = $1/2m_0$)

|A|When talking about radioactivity, the "concentration" can be expressed as: • one half of the number of atoms (N = $1/2N_0$) the half of the activity (A = $\frac{1}{2}A_0$). The activity refers to the decay rate (e.g. counts per second or disintegration per second)

Radioactive Half-lives

Radioactive half-lives are *constant* and do not depend on how much material is present

A longer half-life indicates a more stabile isotope

Ra Po ΡΙι

Plι

Po

Half_lifa
4.5 × 10 ⁹ yea
1.3 × 10 ⁹ yea
24,110 year
5730 years
30.2 years
28.8 years
270 days
3.82 days
8.04 days
8.5 minutes
0.00016 seco

Next time

Uses of Radioisotopes Types of Radioactivity Multistep Reactions

Measuring the Rate of Nuclear Decay