Unit 2 - Day 2

Kinctios

Integrated Rate Laws

Previously

Rates of chemical reactions

- Concentration
- Reactions rates
- Spectrometry

Rates as a function of time

- Instantaneous rate of reaction

Rate laws

- Reaction order
- Rate laws
- Rate constant

Lecture topics - integrated rate laws

Integrated Rate Laws

- First Order Integrated Rate Laws

Half Life

- Half-Lives of First-Order Reactions

Second Order Rate Laws

- Second Order Integrated Rate Laws

Review: rate laws

DEF Rate law: relates the rate of reaction to the concentration of the species participating. A generic rate law is rate $=k[A]^{x}[B]^{y}$ where A and B are reactants and k is the rate constant.

Rate laws tell us the instantaneous reaction rate given the current concentrations.

However, rate laws can't tell us what the concentrations will be at a given time.

Integrated Rate Laws

Integrated rate laws show concentration as a function of time.

This allows us to calculate how much reactant is left after a certain amount of time has passed, or how much time is required for a certain amount of reactant to react.

When working with integrated rate laws, we will monitor only one reactant concentration at a time, reactant \mathbf{A}.

Example - rate law and order

Write the rate law for a zero, first, and second order reaction in which only reactant A appears in the rate law.

Integrating a first order rate law

$$
\text { rate }=k[A]^{0}=k
$$

Order	Zeroth order	First order	Second order
Rate law	rate $=k[A]^{0}=k$	rate $=k[A]^{1}$	rate $=k[A]^{2}$
Rate vs [A]			
[A] vs time			
Integrated rate law	$[A]=[A]_{0}-k t$	$\ln ([A])=\ln \left([A]_{0}\right)-k t$	$\frac{1}{[A]}=\frac{1}{[A]_{0}}+k t$
Linearized integrated rate law plot			

Integrated rate laws - problem solving

(1) If you know $[\mathrm{A}]_{0}$ and k, you can calculate [A] at any time t.
(2) If you know $[A]_{0}$ and $[A]$ at some time t, you can calculate the rate constant k.
(3) If you know k and $[A]$ at some time t, you can calculate how much A you started with ([A] $)_{0}$.

Example

$\mathrm{N}_{2} \mathrm{O}$ gas decomposes at $780^{\circ} \mathrm{C}$ following first-order kinetics. The rate law for the decomposition of $\mathrm{N}_{2} \mathrm{O}$ is rate $=k\left[\mathrm{~N}_{2} \mathrm{O}\right]$, where $k=3.4 \mathrm{~s}^{-1}$. If the initial concentration of $\mathrm{N}_{2} \mathrm{O}$ is 0.20 M , what will the concentration be after 100 ms ?

$$
\mathrm{N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})
$$

Example

$\mathrm{N}_{2} \mathrm{O}$ gas decomposes at $780^{\circ} \mathrm{C}$ following first-order kinetics. The rate law for the decomposition of $\mathrm{N}_{2} \mathrm{O}$ is rate $=k\left[\mathrm{~N}_{2} \mathrm{O}\right]$, where $k=3.4 \mathrm{~s}^{-1}$. If the initial concentration of $\mathrm{N}_{2} \mathrm{O}$ is 0.20 M , how long will it take for the $\mathrm{N}_{2} \mathrm{O}$ concentration to drop to 1% of its original value?

$$
\mathrm{N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})
$$

Pseudo-first order kinetics

Consider the reaction rate of a second order reaction that depends on the concentrations of two different reactants:

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{Cl}^{-} \\
\text {rate }=\mathrm{k}\left[\mathrm{OH}^{-}\right]\left[\mathrm{CH}_{3} \mathrm{Cl}\right]
\end{gathered}
$$

Pseudo-first order kinetics

When a reaction is carried out under conditions where one reactant is at a much higher concentration than the other, such as $\left[\mathrm{OH}^{-}\right]=2.0 \mathrm{M}$ and $\left[\mathrm{CH}_{3} \mathrm{Cl}\right]=0.05 \mathrm{M}$, then [OH^{-}] is effectively constant:

$$
\text { rate }=\mathrm{k}[\mathrm{OH}-]\left[\mathrm{CH}_{3} \mathrm{Cl}\right] \approx \mathrm{k}[2.0]\left[\mathrm{CH}_{3} \mathrm{Cl}\right]
$$

In these situations, we treat the second-order reaction like a first order reaction.

Recap: rate laws vs. integrated rate laws

Rate laws: Rate laws relate the concentrations of the reactants to the reaction rate at any given moment in time.

$$
\text { rate }=k[A]^{x}[B]^{y}
$$

Integrated rate laws: Integrated rate laws allow us to predict how long a reaction will take, or how much of the reactant remains after a certain amount of time.

$$
[A]=[A]_{0}-k t
$$

$$
\ln ([A])=\ln \left([A]_{0}\right)-k t
$$

$$
\frac{1}{[A]}=\frac{1}{[A]_{0}}+k t
$$

Half-life $\left(\mathrm{t}_{1 / 2}\right)$

How much time it takes for one half of $[\mathrm{A}]_{0}$ to react away.

After 1 half-life $[A]=1 / 2[A]_{0}$
After 2 half lives $[A]=1 / 4[A]_{0}$
After 3 half-lives $[A]=1 / 8[A]_{0}$
The amount of reactant remaining after n half-lives is

$$
[A]=(1 / 2)^{n}[A]_{0}
$$

Example

What percentage of a reactant will remain after five half-lives have passed?

Half-life ($\mathrm{t}^{1} / 2$)

At $t_{1 / 2},[A]=1 / 2[A]_{0}$

We can substitute $1 / 2[A]_{0}$ into the integrated rate laws and derive an equation to calculate the half-life for each order of reaction.

Zero Order Half-lives

First order half-lives

Second order half-lives

Summary: Half-lives

Zero order:
As the concentration decreases, the half-life time decreases

First order:
As the concentration decreases, the half-life time remains constant

Second order:

As the concentration decreases, the half-life time increases

Recap: half-lives

	Zeroth order	First order	Second order
Rate law	rate $=k[A]^{0}=k$	rate $=k[A]^{1}$	rate $=k[A]^{2}$
Integrated rate law	$[A]=[A]_{0}-k t$	$\ln ([A])=\ln \left([A]_{0}\right)-k t$	$\frac{1}{[A]}=\frac{1}{[A]_{0}}+k t$
First half-life	$[A]_{1 / 2}=[A]_{0}-k t_{1 / 2}$	$\ln \left([A]_{1 / 2}\right)=\ln \left([A]_{0}\right)-k t_{1 / 2}$	$\frac{1}{[A]_{1 / 2}}=\frac{1}{[A]_{0}}+k t_{1 / 2}$
	$t_{1 / 2}=\frac{[A]_{0}}{2 k}$	$t_{1 / 2}=\frac{\ln (2)}{k}$	$t_{1 / 2}=\frac{1}{k[A]_{0}}$

Question

Compounds A and B react to form C and D in a reaction that was found to be second order overall and second order in A. The rate constant k at $30^{\circ} \mathrm{C}$ is $0.622 \mathrm{M}^{-1} \mathrm{~min}^{-1}$. What is the half-life of A when 0.0410 M A is mixed with excess B ?
Second order
rate $=k[A]^{2}$

$t_{1 / 2}=\frac{1}{k[A]_{0}}$

Radioactive Half-life

Recall: Half-life is the time required to use one-half of the reactant

[A]

When talking about radioactivity, the "concentration" can be expressed as:

- one half of the mass $\left(m=1 / 2 m_{0}\right)$
- one half of the number of atoms ($\mathrm{N}=1 / 2 \mathrm{~N}_{0}$)
- the half of the activity $\left(A=1 / 2 A_{0}\right)$. The activity refers to the decay rate (e.g. counts per second or disintegration per second)

Radioactive Half-lives

Radioactive half-lives are constant and do not depend on how much material is present

A longer half-life indicates a more stabile isotope

Radioisotope	Half-life
Uranium-238	4.5×10^{9} years
Potassium-40	1.3×10^{9} years
Plutonium-239	24,110 years
Carbon-14	5730 years
Cesium-137	30.2 years
Strontium-90	28.8 years
Cobalt-57	270 days
Radon-222	3.82 days
lodine-131	8.04 days
Plutonium-231	8.5 minutes
Polonium-214	0.00016 seconds

Next time

- Measuring the Rate of Nuclear Decay
- Uses of Radioisotopes
- Types of Radioactivity
- Multistep Reactions

