Unit 1

ELECTROCHEMISTRY

Redox Reactions

Biological CO₂ reduction <u>2 Steps</u> Take CO₂ from atmosphere 2. Turn it into fuel, structures, & information <u>Photosynthesis</u> $2H_2O + 2NADP^+ + 3ADP + 3P_i \rightarrow 2NADPH + H^+ + 3ATP + O_2$ oxid red

oxid red

Net Reaction: $3CO_2 + H_2O \rightarrow [CH_2O]_n + O_2$ (1-5% efficiency)

$3CO_2 + 9ATP + 6NADPH \rightarrow G3P + 9P_i + 6NADP^+ + 3H_2O$

Light RXN

Dark RXN

Downstream Yields: Glucose, Cellulose...

Electrochemical CO₂ reduction

<u>2 Steps</u>

1 Take CO₂ from atmosphere 2. Turn it into fuel more efficiently?

Electrochemical Methods $CO_2 \to CO + \frac{1}{2}O_2$ (2e⁻) $H_2 O \rightarrow H_2 + \frac{1}{2} O_2 (2e^-)$

 $CO_2 + 2H_2O \rightarrow CH_3OH + \frac{3}{2}O_2$ (6e⁻)

Trillion Tree Project: US to plant 51 billion trees by 2030. Large scale CO_2 reduction reactors planned: Zero. 28

Other products: CH_4 Formic Acid C_2H_6

Topics

ID: redox reactions, reductants, & oxidants

$MnCl_{2} + H_{2} - - - - > Mn + 2 HCl_{2}$

$N_2H_4 + N_2O_2 - - - - - > 2 H_2O + 2 N2$

 $H_2SO_4 (aq)$ $Pb + PbO_2 ----- > 2 PbSO_4$

 $4 CH_3 NHNH_2 + 5 N_2O_4 ----- > 9 N_2 + 4 CO_2 + 12 H_2O_4$

Orion Service Module

Half reactions

Half reaction A complete reaction is separated into a pure reduction or a pure oxidation by consuming electrons (left side, reduction) or yielding electrons (right side, oxidation)

Half cell

A species is either oxidized or reduced at this physical location in an experiment. Oxidation and reduction will generally not occur at the same electrode at the same time / voltage.

Downs Process

$NaCl(l) \rightarrow Na(l) + Cl_2(g)$

Special Types of Redox Reactions Comproportionation – 2 oxidation state in 1 oxidation state out $CuCl_2 + Cu + heat \rightarrow CuCl$

Disproportionation – 1 oxidation state in 2 oxidations states out $Hg_2Cl_2(s) + heat \rightarrow Hg(l) + HgCl_2$

Half Reactions

Derive the two half reactions:

MnO_4^- (aq) + I^- (aq) $\rightarrow MnO_2$ (s) + I_2 (s)

Basic Conditions

Where are the half reactions?

Two half-cells = electrochemical cell

After the reaction

Balancing Redox Reactions

(1) Identify reactants and products solvent (water), pH (acidic vs basic) other additives and conditions

(2) Identify reductant and oxidant. Assign formal oxidation states acid Write the 1/2 reactions Mass and charge balance with e^- , H⁺, OH⁻, and H₂O

(4) Combine ¹/₂ reactions to cancel electrons (Hess's Law)

Balancing redox equations in aqueous acid

Acidic Conditions

- Separate the overall equation into two half-reactions. For each halfreaction:
 - Balance the main atom
 - 2. Add H_2O to balance O
 - Add H⁺ to balance H
 - Balance the charge using electrons 4.
 - Adjust the equations to have the same number of electrons in each 5. half-reaction
 - Add the two half-reactions. The electrons should all cancel out 6.

Example

$MnO^{4-} + HSO_3^{1-} - - - - > Mn^{2+} (aq) + SO_4^{2-} (aq)$

Acidic Conditions

Example

$Cu(s) + NO_3^{-}(aq) \rightarrow Cu^{2+}(aq) + NO(g)$

Acidic Conditions

Balancing redox equations in aqueous base

Basic Conditions

Separate the overall equation into two half-reactions. For each half-reaction:

- 4. 5. 6.
- Balance the main atom Add H₂O to balance O Add H⁺ to balance H reaction equation.

Add OH-to both sides of the half-reaction Balance the charge using electrons Adjust the equations to have the same number of electrons in each half-

Add the two half-reactions. The electrons should all cancel out. 8. Combine any H^+ and OH^- ions that are on the same side of the overall

Example

MnO_4^- (aq) + I^- (aq) $\rightarrow MnO_2$ (s) + I_2 (s)

Basic Conditions

In class practice: Lead acid battery

In the Lab

Half cell The location in a cell where either a species is oxidized or reduced

Half Reaction

A partial reaction showing describing either reduction (electronation) or oxidation (de-electronation)

Two Half-Cells = Electrochemical Cell

After The Reaction

Oxidation is at the anode & Reduction is at the cathode

Anode is oxidation

Red Cat

Reduction is cathode

The salt bridge

The flow of electrons and ions

Shorthand notation

 $Zn^{2+}SO_{4}^{2-}$

Cell shorthand notation rules

- single vertical line .
- 1. The anode is listed on the far left, and the cathode is on the far right. 2. The salt bridge divides the cell in half, and is represented by $\|$. 3. A phase boundary (such as solid/liquid, or liquid/gas) is represented by a

- 4. Concentrations are listed in parentheses (sometimes omitted when 1 M). 5. If there is more than one ion in a solution, the ions are separated by a comma.

Shorthand Notation Example

Write the shorthand notation for the below reaction with cells that contain 0.2 M Al₂(SO₄)₃ and 0.1 M SnCl₂. $2AI + 3Sn^{2+} \rightarrow 2AI^{3+} + 3Sn^{2+}$

Terminology Alert

Review: Important Definitions

between two locations. Units: Volt = V = J/C. DEF Current | How many or how fast electrons are flowing. Units: Amp=A=C/s. DEF Electrolysis | A chemical reaction induced by applying a voltage. DEF Oxidation | A net loss of electrons relating a reactant to a product. DEF Reduction | A net gain of electrons relating a reactant to a product. DEF Cathode | The electrode in an electrochemical cell where reduction occurs. DEF Anode | The electrode in an electrochemical cell where oxidation occurs. other ions between two half cells.

- DEF Electrochemistry Interaction of molten salts or ionic solutions with electric currents.
- DEF Voltage | How hard electrons are 'pushing' to move between two locations. The amount of energy (J) gained or lost per electron transferred
- DEF Charge A fundamental property of subatomic particles as in p^+ and e^- . The origin of electricity. Units: C=coulomb. DEF Cell Potential A voltage measured between chemically distinct locations at zero current. Units: Volt = V.
- DEF Half Reaction | A chemical reaction that explicitly shows a gain (reduction) or loss (oxidation) of electrons in the reaction scheme.
- DEF Electrochemical Cell | A device that forces electrons through one path (usually an external circuit) and ions through another (the electrolyte)
- DEF Electrolyte | The medium (usually a liquid) in an electrochemical cell that conducts ions but not electrons
- DEF Salt Bridge | A specialized device that allows a common ion to conduct between two electrolyte solutions while minimizing the mixing of all
- DEF Faraday | The amount of charge in 1 mol of electrons. 1 F = 96,485 C

Next Time

Section 8.2 Reaction stoichiometry Standard Reduction Potentials Atomistic models for understanding an electrochemical reaction