Unit 2 – Day 6

KINETICS

Exam 2 - Review

Kinetics

- \bullet probabilities, molecularity)
- 4 factors that effect rate \bullet
- Engineering considerations \bullet
- Experimental rate laws from Initial rates
- Order of reaction
- Integrated rate laws and half lives \bullet
- Radioactivity
- Mechanism, elementary reactions, molecularity \bullet
- Rate laws from mechanisms (RDS and SSA)
- \bullet
- Arrhenius Law (Temperature dependance) •
- Collision theory \bullet
- Transition state theory
- \bullet
- \bullet

Measuring rates of reaction, average, initial, instantenous, macroscopic (concentration), microscopic (k, molecular

Mechanisms are models or "stories" we tell. We check to confirm they are consistent with experimental rate laws

• Sterics (complicated but we'll leave it as very bulks compounds often react more slowly than smaller reactants

Reaction coordinate diagrams (relations between ⊿G, Ea forward, Ea reverse, kf, kr, Keq, reactants, products, reactive intermediates, RDS, would you need SSA to write the rate law? Catalysis: Heterogeneous, Homogenous, poisons, enzymes, true poisons, Michaelis-Menten Kinetics, rxn coordinate diagrams of catalytic reactions

Integrated Rate Laws

Rate law: relates the *rate* of reaction to the concentration of reactants, as in rate = $k[A]^{x}[B]^{y}$; A and B are reactants. Rate laws tell us the instantaneous rate given the current concentrations.

Integrated rate laws show concentration as a function of time. Calculate how much reactant is left after a time (t) has passed, or how much time (t) is required for a certain amount of reactant to react.

Concentration (mM)

Order and Half-lives

Rate law	
Integrated rate law	
Units of k	
7 First half-life	

Zero order: As [A] \downarrow , $t_{1/2}$ \uparrow First order: As [A] \downarrow , $t_{1/2}$ remains constant Second order: As [A] ↓, t_{1/2} ↑

At equilibrium, the rates of of the forward and reverse overall reactions are equal

For an elementary reaction: With multiple elementary steps:

When $K \gg 1$, the rate constant for the forward reaction is much larger than the rate constant for the reverse reaction. The rates are equal at equilibrium. This is a product favored reaction.

When $K \ll 1$, the rate constant for the reverse reaction is much larger than the rate constant for the forward reaction. This is a reactant favored reaction.

K_{eq} can be defined using rates of reaction

$$@ K_{eq} \rightarrow \frac{rate_{forward}}{rate_{reverse}} = 1$$

$$K_{eq} = \frac{k_1}{k_{-1}} \frac{k_2}{k_{-2}} \frac{k_3}{k_{-3}} \dots$$

Chain reaction

A highly reactive intermediate reacts to produce another highly reactive intermediate, which reacts to produce another, and so on.

In this context, the intermediate is referred to as the chain carrier

Examples:

- Radical polymerizations
- Nuclear Bomb (chain carrier = neutron)

• Radical chain reaction (chain carrier = radical)

The nature of explosions

Type 0: Over-pressurization

Type 1: Thermal explosion

A reaction generates heat. Heat speeds up the reaction in a positive feedback loop.

Type 2: Branched-chain explosion

170

$2 H_2 O_2 (aq) \rightarrow H_2 O(l) + O_2 (g)$ A gas evolving reaction in a sealed container

$CH_4 + 2O_2 \longrightarrow 2H_2O + CO_2 + \Delta$

 $H_2 + O_2 \longrightarrow H_2O + \Delta$ $H_2 \rightarrow H_2 + H_2$ (initiation) $H \bullet + O_2 \rightarrow HO \bullet + \bullet O \bullet$ (branching) $\bullet O \bullet + H_2 \rightarrow HO \bullet + H \bullet$ (branching) 1 reactive intermediate in, 2 reactive intermediates out

Rate of Reaction

- increases.
- Medium diffusion: gas > liquid > solid. Reaction rates between phases 2 increase as the surface area of their interface increases (e.g. fine powder dissolve faster than large crystals).
- 3
- **Temperature –** reactant molecules have more energy at higher temperatures, therefore a larger number of reactant molecules can get over the activation energy hump.
- Catalysis some species can speed up the rate of a reaction but are not used 4 up in the reaction. How does this happen? (We'll talk about catalysts later.)

There are 4 chemical factors that affect the speed of a reaction: **Concentration –** Concentration increases, # collisions increase, reaction rate

rxn coordinate

Rate of Reaction

reaction:

(2) Mass Transport – stirring makes inhomogeneous solution homogenous. Homogenous solutions of reactants usually react faster.

There are 2 engineering factors that affect the speed of a

(1) Thermal Transport – when you heat a pot of water the water at the top is colder than the water at the bottom.

Definitions – Components of Arrhenius relation

DEF pre-exponential factor A : the rate constant at infinite temperature, or the theoretical maximum reaction rate possible.

DEF Activation Energy E_a : the minimum amount of energy that the reactants need in order to undergo a chemical reaction

DEF Reaction Coordinate : Progress of a reaction describe at each point as a particular arrangement and trajectory of atoms and molecules in space

Reaction Coordinate

E_a vs. rate constants

Low activation energies ≈ 10 kJ/mol High activation energies $\approx 60 \text{ kJ/mol}$

The higher the activation energy, the stronger the temperature dependence of the rate constant temperature "independent" $k = Ae \frac{-E_a}{RT}$ temperature "dependent"

We can use the relationship between activation energy and temperature to predict rate constants

Rate of Reaction

There are 4 factors that affect the speed of a reaction:

#4 Catalysts speed up the rate of a reaction by providing an alternate mechanism for the reaction. They are not used up in the reaction.

reaction coordinate